

Ubiquitous Peer-to-Peer
Applications in Wireless

Ad hoc Networks

Interim Report

Neil Madhvani

nm300e@doc.ic.ac.uk

MEng in Information Systems Engineering
Imperial College, London

January 2004

Supervisor: Dr Naranker Dulay

Second Marker: Dr Emil Lupu

Ubiquitous Peer-to-Peer Applications in Wireless Ad Hoc Networks

2

Contents

1 INTRODUCTION...3

2 PROGRESS TO DATE ..3

2.1 ORIGINAL PROJECT OBJECTIVES ..3
2.2 SUMMARY OF RESEARCH PHASE ..5
2.3 AUTONOMIC POLICY-BASED DEVICE INTERACTION IN PERSONAL AREA NETWORKS.................6

3 MOVING INTO THE IMPLEMENTATION…..9

3.1 PROPOSED ARCHITECTURE ..9
3.2 HARDWARE AND SOFTWARE PLATFORMS ..12

4 PROJECT PLANNING..13

4.1 PROPOSED MILESTONES...13
4.2 OUTSTANDING ISSUES REGISTER ...13
4.3 RISK REGISTER ..14

Madhvani, N., Imperial College, London

3

1 Introduction
The primary objectives of this interim report are to provide a summary of
the work carried out so far as part of this ISE4 individual project, to take
some time to reflect on this progress, and to propose a roadmap from
now until completion in June 2004.

2 Progress to date
This section looks firstly at the original motivation and objectives, as
determined in October 2003 when this project was proposed. Following
on from this is a summary of findings from the various papers that I have
read around this area. We then discuss how the project has evolved and
moved into a slightly different direction with more specific objectives.

2.1 Original project objectives

My original areas (mainly developed over the 2003 summer holidays)
revolved around the idea of Voice over IP (VoIP) technologies, particularly
involving cellular networks. It is apparent that whilst the number of
mobile phone users is increasing on a daily basis, and there is growing
use of VoIP over the Internet with recently-announced protocols such as
SIP (Session Initiated Protocols), very few services currently exist that
exploit the synergy between these two worlds. For many applications,
such as group conferencing of relatively ‘local’ users, it simply isn’t
efficient to deliver voice traffic over the cellular network, due to the
relatively long call setup time and excessive bandwidth usage. My view is
that a ‘best-effort’ walkie-talkie style service delivered via an overlay
network utilising Bluetooth and WiFi could potentially be much more
effective, but clearly there are a number of issues that require
investigation, including how to carry out ‘least-cost’ multi-hop routing and
device discovery.

After meeting with my supervisor, we came to the conclusion that it
would be more interesting to investigate ubiquitous peer-to-peer
applications in general across wireless ad hoc networks. Voice could then
potentially be one of the services delivered across such a network. The
following was subsequently agreed as the original kick-off proposal:

In the space of just a few years, peer-to-peer (P2P) networking has become a

computing phenomenon. Millions of Internet users are communicating with each

other through P2P file sharing software programs that allow a group of computer

users to share text, audio and video files stored on each other's computers.

However, as it becoming increasingly evident, P2P networks have capabilities and

uses that stretch far beyond ‘file trading’.

Ubiquitous Peer-to-Peer Applications in Wireless Ad Hoc Networks

4

With the proliferation of mobile devices such as cellular telephones and PDAs, and

the increasingly pervasive nature of wireless technology, it is clear that there is no

longer a need for us to restrict peer-to-peer applications to fixed computers on

wired networks, or indeed to constrict cellular users to traditional client/server

applications such as WAP (Wireless Application Protocol). P2P and wireless

technology are an ideal match, and deploying the two together will enable us to

exploit a wide range of new opportunities that were previously not feasible. The

inherent nature of mobile devices, in that they are suitably lightweight and

portable to be carried around by people, makes them ideal instruments to form

the peers of a global wireless data network, where information can be shared

between individuals in a ubiquitous manner.

Unfortunately current 2G and 3G mobile networks are not suitable in isolation for

delivering mobile P2P services, due to the relatively high cost of data

transmission, latency and limited footprint. A mobile ad hoc network is a system

comprised of mobile devices that act as both hosts and routers, communicating

wirelessly in an arbitrary way without an existing network infrastructure. The

devices on an ad hoc network are free to move about and the topology of this

kind of network is therefore dynamic. A key feature is multi-hop support, which

for example could allow a device that is outside traditional mobile coverage to still

be able to access services by relaying requests to another device that is in range

over a technology such as Bluetooth. Alternatively, it may be more economical to

send data using a nearby WiFi hotspot rather than through a GSM mobile network

– the potential practical uses of ad hoc technology are only limited by imagination.

By introducing a peer-to-peer architecture over such a scheme could enable users

to access fully decentralised applications and to discover new resources as and

when they become available.

The aim of this project is to first of all investigate recent developments in the

wireless mobile, peer-to-peer and ad hoc network arenas, in order to fully

understand the challenges that must be overcome for such a scheme to be

commercially viable in the near future.

The second phase of the project will build upon the research phase above and will

involve the design and implementation of a real peer-to-peer ad hoc wireless

system to demonstrate the benefits of this next generation technology. The goal

is to be able to demonstrate a set of applications such as multicast push-to-talk

voice and location-based services on actual mobile devices running J2ME (Java 2

Mobile Edition). The devices will be capable of discovering each other, and

adapting the types of service presented to the end user based on the methods of

communication available, e.g. Bluetooth, GSM, WiFi. A universal framework will

need to be defined in order to allow new applications to be added in the future.

Issues of security and confidentiality in such a distributed environment are clearly

important and will be taken into consideration during the design.

Madhvani, N., Imperial College, London

5

2.2 Summary of research phase

I spent several weeks carrying out a survey of existing work in the areas
of mobile computing, peer-to-peer networking, cellular telephony and ad
hoc networking arenas in order to identify technical challenges. The
following is a summary of the types of areas that I looked into:

• Peer-to-peer networking – services such as Napster and
Gnutella which have been popular for file-sharing on the Internet,
the JXTA project, Distributed.Net and SETI@home which exploit
the abundance of clock cycles.

o I had a specific look at the Free World Dialup VoIP network,
particularly at the lightweight SIP protocol which is very
similar to HTTP. As part of this I read some work [TURN03]
by Kenneth Turner on VoiceXML and CRESS.

• Wireless WANs – I looked at various cellular technologies
[WEB01] such as FDMA, TDMA and CDMA, plus some of the
applications such as WAP, i-mode, CHTML and newer 3G services.
I was particularly impressed by the Nextel PTT (Push to Talk)
service in the US which offers a coast-to-coast walkie-talkie
service for a flat monthly fee.

o I concluded that cellular airtime is still relatively expensive
and not suitable for frequent group communications. The
speed is also quite restrictive, e.g. for file sharing.

o I also looked at FastChat [WEB02], a push-to-talk style
service launched recently in the UK. This works over GPRS,
but only supports Symbian handsets at the moment.

• Wireless LANs – I looked at WiFi, Bluetooth [GROT01],
proprietary low-range radio services such as Cybiko [WEB03],
infra-red, and Zimmerman intra-body networks [KORT02].

• Ad hoc networking – The IETF work on MANET is quite
interesting [WEB04], and I found that there is quite a bit of work
going on relating to efficient distributed routing algorithms.
Security is also an important issue. The AODV and DSR routing
algorithms have been proposed for multi-hop peer-to-peer
networks.

• Hardware and software for mobile devices – I considered
technologies such as Symbian, J2ME (Java 2 Micro Edition) and
Microsoft .NET Compact Framework. I got the impression that the
latter is quite flexible and provides a rich API for development. It
also means that development can be done in C# or VB.NET rather

Ubiquitous Peer-to-Peer Applications in Wireless Ad Hoc Networks

6

than C++, as is the case with Symbian. J2ME is far too restrictive
– the API is extremely limited.

I also looked at other research projects that had similar overall interests
to mine, i.e. bringing p2p applications onto a wireless network. There
were some useful outputs from this, including:

• University of Oregon, Proem Project [KORT02] – they have
developed a framework for wireless p2p applications and the paper
advocates impromptu collaboration.

• The Virginia Polytechnic Institute and State University,
Wireless Ad hoc messenger [WEB05] – sponsored by Microsoft
Research, based on .NET CF, uses multi-hop routing for a text-
based p2p chat service across iPAQs.

• Motorola Labs and Purdue University, MOBY [HOR02] – a Jini-

based platform with an interesting security model.

• University of Florida, Konark [DES03] and [HEL03] – a service
discovery and delivery protocol for ad hoc networks.

My conclusion from the research that I carried out was that whilst there
were a number of interesting areas that would benefit from additional
research, such as security isssues and delivering multimedia (e.g. video)
services over such a network with QoS implications, it would be quite
difficult to demonstrate such a framework using the hardware available
for the project.

As a result of further discussions with Dr. Dulay a couple of weeks ago, it
was therefore decided that it might be better to change the focus of the
project slightly, and to consider how consumer devices in a personal area
network could carry out self-management through the specification of
policies.

2.3 Autonomic policy-based device interaction in
Personal Area Networks

Work on this more specific idea has only been ongoing for the last couple
of weeks, and is motivated by the AMUSE project [WEB06], which is
looking at the autonomic management of ubiquitous systems for e-
Health. We thought it would be interesting to take this idea and apply it
to Personal Area Networks (PANs), made up of consumer devices such as
phones, PDAs, MP3 players etc. Consumers nowadays are carrying an
increasing number of these devices, resulting in an increasing amount of
time spent configuring and operating them. For example, a user may
have to search for the volume control on his MP3 player when a call
comes in on his mobile phone, thereby wasting valuable time and causing

Madhvani, N., Imperial College, London

7

unnecessary inconvenience. To date, very few attempts have been made
to automate the management of these consumer devices.

The AMUSE project advocates the concept of a self-managed cell (SMC)
as the basic architectural pattern for implementing self-management at
both local and integrated levels. The cell would therefore contain various
devices as well as administrative functionality, e.g. discovery and policy
management services. This brings about several areas of interest:

• Specification of policies in a relatively high-level form, and the
subsequent compilation of these into software objects that can be
executed. Development of a common framework for hardware
vendors to adhere to when developing new consumer devices, so
that they can join a self-managed cell ubiquitously.

• How to group consumer devices in a hierarchical fashion, enabling
policy inheritance.

• Devices in this environment are likely to appear and disappear,
e.g. when switched off. The cell management functionality needs
to consider how to react when these types of events occur.

• Discovery of devices within the cell. Managing devices that have
different capabilities, perhaps via adapters.

• How these cells should interact when in proximity of each other,
e.g. can a device belong to and be managed by one than one cell,
and the conflict resolution that is necessary for the policy rules.

• The intention is to keep user input to a minimum, i.e. an
autonomic system. However we could use user feedback to refine
the policies.

• Efficient interaction between devices. It is clearly important to
look at ways of minimising the impact of the management
functionality of the battery performance of these devices. Such a
system should therefore aim to avoid unnecessary device
communication.

There are a number of other useful sources of information in this arena.
Dr Mitchell Waldrop [MITC03] in his recent article on Autonomic
Computing: The Technology of Self-Management, refers to a “continuous
control loop”, i.e. each component of the system (hardware and software)
should now only know how its assigned tasks but should also have
internal mechanisms that constantly monitor its own operation, and make
corrections as needed. A key feature of such a scheme is that each
device would handle as much as possible locally – and yet still have the
means to call on the larger system when it needs help. Dr Waldrop also

Ubiquitous Peer-to-Peer Applications in Wireless Ad Hoc Networks

8

suggests that the scheme could be recursive, so that when the call for
help reaches that system, it may decide to call for help to a still larger
system for help.

Project Oxygen [WEB07] at MIT which has an objective of “bringing
abundant computation and communication, as pervasive and free as air,
naturally into people's lives” has already demonstrated the benefits of
self-management in a range of applications. They distinguish between
basic physical and basic virtual objects. The former senses or actuates a
physical entity, whereas the latter collects, generates and transforms
information, e.g. extracting information from an incoming electronic form
and sending the results on to a particular device. The project also
advocates the use of a scripting language to enable the tasks that need to
be automated to be specified easily and rapidly.

My intention is to use relevant parts of the Ponder Policy Specification
Language [DAMI01] which has been developed by the DSE group. Most
pertinent are obligation policies, which have the following notation:

inst oblig policyName “{”
on event-specification ;
subject [<type>] domain-Scope-Expression ;
[target [<type>] domain-Scope-Expression ;]
do obligation-action-list ;
[catch exception-specification ;]
[when constraint-Expression ;] “}”

An example of a policy we could use for the self-management of
consumer devices is:

inst oblig incomingCellularCall {
on eventIncomingCellularCall(callerID) ;
subject s = /dev/cellular/phones ;
target t = /dev/music ;
do t.mute() -> t.playCallerID(callerID) ;
when s.profile != “do not disturb” ;

}

The above policy is specified by cellular phone devices, and applies to all
devices that live in the /dev/cellular/phones namespace. When a call
comes in, all devices that are in the /dev/music namespace will be asked
to mute, and to then play out the incoming caller’s ID to the user.
However these actions will not be carried out if the phone’s profile is in
the “do not disturb” mode, i.e. the user doesn’t want the music to stop
when a call comes in!

Madhvani, N., Imperial College, London

9

As specified in the Ponder language, the basic policy constraints can be
derived from:

• Subject/target state – reflected by attributes at an object’s
interface.

• Action/event parameters

• Time constraints, e.g. between 0200 and 0400.

It also seems appropriate to use similar policies to define the behaviour of
the management components within the cell – this is almost like meta-
policy. For example, we might want to use a policy to specify how
frequently the discovery server polls for devices, perhaps depending on
the amount of battery power left. Ponder supports meta-policies, which
can be used to resolve conflicts between overlapping subjects and
targets.

3 Moving into the implementation…

3.1 Proposed architecture

This section presents my ideas with regards to a basic framework
implementation. The intention here is to develop a relatively simple but
demonstrable system, which has the ability to read in policies, handle
events generated by devices within the cell and allow for actions to be
performed on those devices autonomically. We are also interested in
dealing with the discovery and loss of devices and generating appropriate
events.

The diagram on the following page illustrates some of the key interactions
in the system.

Event
Server

Discovery
Server

Policy

Policy

Policy

MBX

MBX

MBX

event

event

event

event

event

Each Policy runs as a
thread, waiting on its
mailbox

Check attribute(s) on the subject or target device(s)

Check attribute(s) of the event

Periodic broadcast to
check if devices are
still alive and
discover new ones

newDevice
and
lostDevice
events

“I am alive”
and “I am a
new device”
responses

Find out capabilities of
device

Registry
Server

event

event

The Registry keeps a
track of namespaces
and their
membership by
devices

e.g. incomingCellularCall

e.g. lowBattery

Register policies

Activate and disable events

Policies

The intention is for policies to simply be software objects. Whilst they will
be originally specified using Ponder syntax, the compilation into objects
will be done before execution. Initially, the compilation will be done by
hand, however as a future extension it might be worth looking into ways
of refining the existing Ponder compiler to provide the ability to generate
code for this system.

Each policy will run as a thread and will block on its individual mailbox.
When messages (events) become available, the thread will be woken up
to carry out any necessary actions.

Events & the Event Server

Events will be represented as objects as well. These will be created by
the device and sent across (serialised) to the event server. Using
inheritance, we can create specialised events, e.g. temperatureEvent
which will inherit from the Event base class. A temperatureEvent may
contain a member that stores the temperature reading that caused the
event to occur.

The Event Server will send Activate and Disable messages to the devices
dependent on which events it wishes to listen for. The Event Server
bases this information on the collection of policies that it knows about.
This means that devices will only send out events if there are policies that
are interested in them.

It may be worth using a thread pool for the Event Server. These worker
threads would be used to despatch incoming events out to the relevant
policies concurrently.

Registry & devices

A directory-like hierarchical structure for device grouping. e.g.

/dev/music/mp3_player

/dev/cellular/nokia_8910_phone

/dev/pda/hp_ipaq_h5550

A domain can have only one parent at most, but many children, but
devices can belong to one or more domains.

The Registry Server will receive events about new devices, or ones that
are no longer part of the cell. It needs to be able to work out where in
the namespace a device should be added and in some cases if a device
should be placed in more than one namespace.

The Device class itself will be abstract (an interface) – different types of
devices will then extend this, e.g. PhoneDevice which will also be an

Ubiquitous Peer-to-Peer Applications in Wireless Ad Hoc Networks

12

interface. The actual adapters that talk to the physical hardware, e.g.
WindowsSmartPhone can then use multiple inheritance via interfaces to
implement functionality that that device can provide. So a
WindowsSmartPhone may implement SimplePDADevice as well as
PhoneDevice.

Discovery

The Discovery Server will send out broadcast packets every now and then
(configurable via a policy!) to check the status of existing devices and to
see if there are any new ones. This mechanism will probably use IP
multicast with UDP packets.

To discover device capabilities, the Discovery Server is likely to send out
a direct UDP packet to the relevant device, and the device will respond
accordingly.

Start-up behaviour

• Start device registry

o Load last known topology if found

• Start discovery server

• Start event server

• Start policy server

o deploy ‘internal’ policies – e.g. to discovery and event
servers – this defines the behaviour of these components.

o create a thread for each standard policy and start
execution.

Periodic flush of device topology to disk, so that we can reload it if the
system needs to be restarted.

3.2 Hardware and software platforms

The proposed development environment is .NET Compact Framework
using Visual Studio .NET 2003. These components are already installed
on my PC and were used by me over the Christmas break to develop a
sample UDP/TCP chat application across an iPAQ Pocket PC and laptop
with WiFi card in order to learn the .NET API and the C# language. The
C# language has some very useful features such as delegates which Java
does not support.

In terms of hardware, I currently have an iPAQ H5550 with Bluetooth and
WiFi and a Windows Smartphone Developer Kit (including red-e

Madhvani, N., Imperial College, London

13

Smartphone) on loan from the DSE group. I’m trying to find out if I can
get hold of a Smartphone that supports the Bluetooth PAN profile.

4 Project planning

4.1 Proposed milestones

Target date Activities

End of Week 3,

Spring Term

Hand in Interim report and meet with supervisor and second

marker to discuss ideas. Formalise a design for the basic

architecture.

End of Week 5,

Spring Term

Translate design into C# code, setting up skeleton structure

for classes etc.

End of Week

11, Spring Term

Bulk of development work complete, and a view of what

extra functionality can be added once the exam period is

over.

After Exams

(likely to be

End of Week 3,

Summer Term)

Resume work on project. Meet with supervisor to review

progress.

End of Week 6,

Summer Term

Development work should be almost complete by this stage.

End of Week 7,

Summer Term

The report and presentation should be almost at completion

stage.

4.2 Outstanding issues register

Issue Status Opened Closed Notes

Clarification of Ponder

syntax – how to specify

“for all” devices in a

group, or to refer to

specific devices?

O 21/01/04

We have iPAQ devices

but for the demo can

we obtain a Bluetooth

Smartphone?

O 21/01/04 If not, maybe we

can simulate a

phone device.

Communication

between remote objects

using RMI/Remoting or

simple TCP/UDP

sockets?

O 23/01/04 .NET CF doesn’t

support remoting,

and I don’t think

J2ME supports

RMI but this

needs

investigation. The

Socket

Ubiquitous Peer-to-Peer Applications in Wireless Ad Hoc Networks

14

implementation in

.NET CF however

is quite easy to

work with.

Status values are O (Open, under investigation), C (Closed), H (On Hold).

4.3 Risk register

Risk Severity Raised Mitigation notes

.NET CF may not be

able to handle a large

number of threads

efficiently, i.e. to

support one thread per

policy object

MEDIUM 25/01/04 The design may have to be

changed if this model proves

to be too slow.

Lack of availability of

hardware for the

demonstration

MEDIUM 25/01/04 I will require at least 2 iPAQ

h5550 or similar devices,

and ideally a Bluetooth

Smartphone. Without at

least 3 devices it will be hard

to demonstrate the results of

this work.

Learning curve for

Microsoft .NET API and

C# may prove too

difficult given the

project timescale

LOW 25/01/04 Was HIGH risk, now LOW - I

spent the Christmas holidays

learning about .NET and C#

with some sample

applications, so I now have a

better idea of what is

achievable.

Hard to interface into

real consumer devices

MEDIUM 25/01/04 We will have to simulate

devices such as MP3 players,

since getting data from and

interfacing into a real one is

likely to prove infeasible.

Severity values are CRITICAL, HIGH, MEDIUM and LOW.

5 Bibliography
[TURN03] Turner, K. J., “Representing New Voice Services and Their
Features”, Proc. Feature Interactions in Telecommunication Networks VII,
pp 123-140, IOS Press, Amsterdam, June 2003

Madhvani, N., Imperial College, London

15

[GROT01] Groten D., Schmidt, J. R., “Bluetooth-based Mobile Ad Hoc
Networks: Opportunities and Challenges for a Telecommunications
Operator”, IEEE VTS 53rd Vehicular Technology Conference, VTC 2001
Spring, pp. 1134-1138, May 2001.

[KORT02] Kortuem G., Schenider J., Preuitt D., Thompson T. G. C.,
Fickas S., Segall Z., “When Peer-to-Peer comes Face-to-Face:
Collaborative Peer-to-Peer Computing in Mobile Ad hoc Networks”, First
International Conference on Peer-to-Peer Computing (P2P'01), August 27
- 29, 2001, Lingköping, Sweden.

[HOR02] Horozov T., Grama A., Vasudevan V., Landis S., “Moby – A
Mobile Peer-to-Peer Service and Data Network”, Proceedings of the
International Conference on Parallel Processing (ICPP’02), 2002.

[MITC03] Waldrop, M. M., “Autonomic Computing: The Technology of
Self-Management”, The Future of Computing Project, Woodrow Wilson
International Centre of Scholars, July 2003.

[DAMI01] Damianou, N., Dulay, N., Lupu E., Sloman M., “The Ponder
Policy Specification Language”, Proc. Policy 2001: Workshop on Policies
for Distributed Systems and Networks, Bristol, UK, 29-31 Jan. 2001,
Sptringer-Verlag LNCS 1995, pp 18-39.

[SVE03] Sventek, J., “AMUSE – Autonomic Management of Ubiquitous
Systems for e-Health”, PowerPoint Presentation Slides, University of
Glasgow.

[DES03] Desai B., Verma V., Helal S., “Infrastructure for Peer-to-Peer
Applications in Ad-Hoc Networks”, Submitted to 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, February
2003.

[HEL03] Helal S., Desai N., Verma, V., Lee, C., “Konark – A Service
Discovery and Delivery Protocol for Ad-Hoc Networks”, Proceedings of the
Third IEEE Conference on Wireless Communication Networks (WCNC),
New Orleans, March 2003.

[PER00] Perkins, C., E., “IP Address Autoconfiguration for Ad Hoc
networks”, draft-ietf-manet-autoconf-00.txt, IETF Mobile Ad Hoc
Networking Working Group, 10 July 2000.

[JOH94] Johnson, D. B., “Routing in Ad Hoc Networks of Mobile Hosts”,
Proceedings of the IEEE Workshop on Mobile Computing Systemsn and
Applications, December 1994.

[SUN01] Sun, J., “Mobile Ad Hoc Networking: An Essential Technology
for Pervasive Computing”, Proc. International Conferences on Info-tech &
Info-net, Beijing, China, C:316-321.

Ubiquitous Peer-to-Peer Applications in Wireless Ad Hoc Networks

16

[WEB01] Wireless Wide Area Networking Technologies,
http://www.rhowireless.com/wan/Default.htm

[WEB02] FastChat, http://www.fastchat.co.uk

[WEB03] Cybiko, http://www.cybiko.com

[WEB04] IETF Mobile Ad Hoc Networking (MANET) Working Group,
http://protean.itd.nrl.navy.mil/manet/manet_home.html.

[WEB05] The Virginia Polytechnic Institute and State University,
Multihop Ad Hoc Instant Messaging using Microsoft .NET Compact
Framework and Pocket PCs, http://people.cs.vt.edu/~irchen/microsoft-
grant/Website_HTML_Files/index.html.

[WEB06] AMUSE: Autonomic Management of Ubiquitous Systems for e-
Health, http://www.doc.ic.ac.uk/~ecl1/projects/AMUSE/.

[WEB07] MIT Project Oxygen, http://oxygen.lcs.mit.edu/.

[WEB08] The JXTA Project, Sun Microsystems, http://www.jxta.org.

[WEB09] JXTA for J2ME, Sun Microsystems, http://jxme.jxta.org.

